Answer:
Rate of change of area will be [tex]9.796cm^2/min[/tex]
Explanation:
We have given rate of change of radius [tex]\frac{dr}{dt}=0.03cm/min[/tex]
Radius of the circular plate r = 52 cm
Area is given by [tex]A=\pi r^2[/tex]
So [tex]\frac{dA}{dt}=2\pi r\frac{dr}{dt}[/tex]
Puting the value of r and [tex]\frac{dr}{dt}[/tex]
[tex]\frac{dA}{dt}=2\times 3.14\times 52\times 0.03=9.796cm^2/min[/tex]
So rate of change of area will be [tex]9.796cm^2/min[/tex]