Answer:
[tex]v_{f}=17.47 m/s[/tex]
Explanation:
Let's use the conservation of momentum to solve it.
[tex] p_{initial}= p_{final}[/tex] (1)
So we can rewrite (1), using the above information:
[tex]m_{1}v_{1i}+m_{2}v_{2i}=m_{1}v_{f}+m_{2}v_{f}[/tex]
[tex]m_{1}v_{1i}+m_{2}v_{2i}=v_{f}(m_{1}+m_{2})[/tex]
[tex]v_{f}=\frac{m_{1}v_{1i}+m_{2}v_{2i}}{m_{1}+m_{2}}[/tex]
[tex]v_{f}=\frac{1100\cdot 14+2500\cdot 19}{1100+2500}[/tex]
Finally, the magnitude of the velocity of the wreckage of the two cars immediately after the collision is:
[tex]v_{f}=17.47 m/s[/tex]
I hope it helps you!