Respuesta :

Answer:

[tex] (2x+1) (x+4) = 2x^2 + 9x +8[/tex]

And then that's our final solution for this case.

Step-by-step explanation:

One way to solve this problem is using the following property:

[tex] (a+b) (c+d) = ac + ad + bc+bd[/tex]

On this case we know that if we compare this formula with our expression (2x+1) (x+4) we have this:

a= 2x, b =1 , c= x , d = 4

We can find the individual products like this:

[tex] ac= 2x* x = 2x^2[/tex]

[tex] ad= 2x*4 = 8x[/tex]

[tex] bc= 1*x = x[/tex]

[tex] bd = 1*4 = 8[/tex]

Then if we replace the values we got:

[tex] (2x+1) (x+4) = 2x^2 + 8x +x+8[/tex]

And we can add the two common factors 8x and x like this:

[tex] (2x+1) (x+4) = 2x^2 + 9x +8[/tex]

And then that's our final solution for this case.