Answer:
[tex]a=\pm 2[/tex], [tex]x=\pm \sqrt{5}[/tex] and [tex]c=\pm \sqrt{3}[/tex].
Step-by-step explanation:
Consider the given equations are
a. [tex]4a^2=16[/tex]
b. [tex]5x^2-25=0[/tex]
c. [tex]8-c^2=5[/tex]
(a)
[tex]4a^2=16[/tex]
Divide both sides by 4.
[tex]a^2=4[/tex]
Taking square root on both sides.
[tex]a=\pm \sqrt{4}[/tex]
[tex]a=\pm 2[/tex]
(b)
[tex]5x^2-25=0[/tex]
Add 25 on both sides.
[tex]5x^2=25[/tex]
Divide both sides by 5.
[tex]x^2=5[/tex]
Taking square root on both sides.
[tex]x=\pm \sqrt{5}[/tex]
(c)
[tex]8-c^2=5[/tex]
Subtract 8 from both sides.
[tex]-c^2=-3[/tex]
Multiply both sides by -1.
[tex]c^2=3[/tex]
Taking square root on both sides.
[tex]c=\pm \sqrt{3}[/tex]