Respuesta :

Answer:

(a) x = -0.418 , -3.581

(B) c = 6.855, -1.855

Step-by-step explanation:

(A) We have given equation [tex]4x^2+5x+3=2x^2-3x[/tex]

[tex]2x^2+8x+3=0[/tex]

On comparing with standard quadratic equation [tex]ax^2+bx+c[/tex]

a = 2, b = 8 and c = 3

So roots of the equation will be [tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}=\frac{-8\pm \sqrt{8^2-4\times 2\times 3}}{2\times 2}=\frac{-8\pm 6.324}{4}=-0.418,-3.581[/tex]

(b) [tex]c^2-14=5c[/tex]

[tex]c^2-5c-14=0[/tex]

a = 1, b = -5 and c= -14

So [tex]c=\frac{-b\pm \sqrt{b^2-4ac}}{2a}=\frac{-(-5)\pm \sqrt{(-5)^2-4\times 1\times (-14)}}{2\times 1}=\frac{5\pm 8.71}{2}=6.855,-1.855[/tex]