Respuesta :

Answer:

Step-by-step explanation:

The correct way in which to write this function is y = 2x^2 - 4, where ^ indicates exponentiation.

1.  Interchange x and y.  From y = 2x^2 - 4 we get x = 2y^2 - 4

2.  Solve this result for y:  2y^2 - 4 - x =>  2y^2 = x + 4.  Divide both sides by 2       to isolate y^2:

     y^2 = (1/2)(x + 4)

                                                                              √(x + 4)

       Take the square root of both sides:  y = ± --------------    

                                                                                   √2

Note that √(x + 4) is real only for x ≤ 4.  Also (very importantly) note that this formula for y has two distinct values, meaning that it does not represent a function.  If we take only +√(x + 4) and ignore -√(x + 4), then we'll have the function

            √(x + 4)                                                                

 y = ± ------------------ with the domain restriction x ≥ -4    

                 √2                                                              

Answer:

B

Step-by-step explanation:

Correct on E2020