Respuesta :

Step-by-step explanation:

To prove:

[tex]\cos 3x=\cos^3x-3\sin^2 x\cos x[/tex]

Identities used:

[tex]\cos(A+B)=\cos A\cos B+\sin A\sin B[/tex]      ......(1)

[tex]\sin 2A=2\sin A\cos A[/tex]        ........(2)

[tex]\cos 2A=\cos^2A-\sin^2 A[/tex]     .......(3)

Taking the LHS:

[tex]\Rightarrow \cos 3x=\cos (x+2x)[/tex]

Using identity 1:

[tex]\Rightarrow \cos (x+2x)=\cos x\cos 2x-\sin x\sin 2x[/tex]

Using identities 2 and 3:

[tex]\Rightarrow \cos x(\cos ^2x-\sin^2 x)-\sin x(2\sin x\cos x)\\\\\Rightarrow \cos^3x-\sin^2x\cos x-2\sin^2 x\cos x\\\\\Rightarrow \cos^3x-3\sin^2x\cos x[/tex]

As, LHS = RHS

Hence proved