Respuesta :

Answer : The number of molecules of [tex]OF_2[/tex] is, [tex]1.47\times 10^{21}[/tex]

Explanation :

First we have to calculate the moles of [tex]OF_2[/tex]

[tex]\text{Moles of }OF_2=\frac{\text{Mass of }OF_2}{\text{Molar mass of }OF_2}[/tex]

Molar mass of [tex]OF_2[/tex] = 54 g/mol

[tex]\text{Moles of }OF_2=\frac{0.132g}{54g/mol}=0.00244mol[/tex]

Now we have to calculate the number of molecules of [tex]OF_2[/tex]

As, 1 mole of [tex]OF_2[/tex] contains [tex]6.022\times 10^{23}[/tex] number of [tex]OF_2[/tex] molecules

So, 0.00244 mole of [tex]OF_2[/tex] contains [tex]0.00244\times 6.022\times 10^{23}=1.47\times 10^{21}[/tex] number of [tex]OF_2[/tex] molecules

Thus, the number of molecules of [tex]OF_2[/tex] is, [tex]1.47\times 10^{21}[/tex]