Answer : The number of molecules of [tex]OF_2[/tex] is, [tex]1.47\times 10^{21}[/tex]
Explanation :
First we have to calculate the moles of [tex]OF_2[/tex]
[tex]\text{Moles of }OF_2=\frac{\text{Mass of }OF_2}{\text{Molar mass of }OF_2}[/tex]
Molar mass of [tex]OF_2[/tex] = 54 g/mol
[tex]\text{Moles of }OF_2=\frac{0.132g}{54g/mol}=0.00244mol[/tex]
Now we have to calculate the number of molecules of [tex]OF_2[/tex]
As, 1 mole of [tex]OF_2[/tex] contains [tex]6.022\times 10^{23}[/tex] number of [tex]OF_2[/tex] molecules
So, 0.00244 mole of [tex]OF_2[/tex] contains [tex]0.00244\times 6.022\times 10^{23}=1.47\times 10^{21}[/tex] number of [tex]OF_2[/tex] molecules
Thus, the number of molecules of [tex]OF_2[/tex] is, [tex]1.47\times 10^{21}[/tex]