Respuesta :

Answer:

a = √325 units, m∠B = 34.63° and  m∠C=55.37°

Step-by-step explanation:

Consider in triangle ABC,

AC = b = 10 units,

AB = c = 15 units,

m∠A = 90°,

BC = a

Using law of cosine,

[tex]a^2 = b^2 + c^2 - 2bc \cos A[/tex]

[tex]a^2 = 10^2 + 15^2 - 2\times 10\times 15 \cos 90^{\circ}[/tex]

[tex]a^2 = 100 + 225[/tex]

[tex]a^2 = 325[/tex]

[tex]a=\sqrt{325}[/tex]    ( negative value is not recommended because side can't be negative )

Now, Again using law of cosine,

[tex]b^2 = a^2 + c^2 - 2ac\cos B[/tex]

[tex]10^2 = 325 + 15^2 - 2\sqrt{325}(15) \cos B[/tex]

[tex]100 = 325 + 225 - 30\sqrt{325}\cos B[/tex]

[tex]100 = 550 - 30\sqrt{325}\cos B[/tex]

[tex]30\sqrt{325}\cos B=550-100[/tex]

[tex]30\sqrt{325}\cos B=450[/tex]

[tex]\cos B=\frac{450}{30\sqrt{325}}\implies m\angle B = 33.69^{\circ}[/tex]

Sum of measures of all interior angles of a triangle is supplementary,

⇒m∠A + m∠B + m∠C = 180°

⇒ 90° + 33.69° + m∠C = 180°

⇒ 123.69° + m∠C = 180°

⇒ m∠C = 180° - 123.69° = 56.31°

Ver imagen slicergiza