Answer:
[tex]\frac{4C1 \cdot 2C1}{6C2} =\frac{8}{15}[/tex]
Step-by-step explanation:
A box contains 4 red chips and 2 blue chips
total 4+2= 6 chips
the chips are different colors. we need to select 1 chip from red and 1 chip from blue
we can select 1 red chip from 4 red chips in 4C1 ways
[tex]4C1=\frac{4!}{1!(4-1)!} =4[/tex]
we can select 1 blue chip from 2 blue chips in 2C1 ways
[tex]2C1=\frac{2!}{1!(2-1)!} =2[/tex]
select 2 chips from 6 chips in 6C2 ways
[tex]6C2=\frac{6!}{2!(6-2)!} =15[/tex]
probability that the chips are different colors
[tex]\frac{4C1 \cdot 2C1}{6C2} =\frac{8}{15}[/tex]