Respuesta :

sin²θ + cos²θ = 1

Step-by-step explanation:

We need to explain why sin²θ + cos²θ = 1

Consider a right angled triangle, we have base, perpendicular and hypotenuse.

Refer the figure

              [tex]sin\theta =\frac{\texttt{perpendicular}}{\texttt{hypotenuse}}\\\\cos\theta =\frac{\texttt{base}}{\texttt{hypotenuse}}[/tex]

Taking  sin²θ + cos²θ  

              [tex]sin^2\theta =\frac{\texttt{perpendicular}^2}{\texttt{hypotenuse}^2}\\\\cos^2\theta =\frac{\texttt{base}^2}{\texttt{hypotenuse}^2}\\\\sin^2\theta+cos^2\theta=\frac{\texttt{perpendicular}^2}{\texttt{hypotenuse}^2}+\frac{\texttt{base}^2}{\texttt{hypotenuse}^2}\\\\sin^2\theta+cos^2\theta=\frac{\texttt{perpendicular}^2+\texttt{base}^2}{\texttt{hypotenuse}^2}[/tex]

We know Pythagoras theorem

               perpendicular² + base² =  hypotenuse²    

              [tex]sin^2\theta+cos^2\theta=\frac{\texttt{hypotenuse}^2}{\texttt{hypotenuse}^2}\\\\sin^2\theta+cos^2\theta=1[/tex]  

 Hence sin²θ + cos²θ = 1  

Ver imagen agaue