Write an equation for a cosine function with the
followingproperties.
amplitude = 2, period = /6, phase shift = /2.

Respuesta :

Answer:

The required function is [tex]f(x)=2\cos (\frac{\pi}{3}x-\frac{2\pi}{3})[/tex].

Step-by-step explanation:

Note: The value of period and phase shift are not given properly.

Consider amplitude = 2, period = 6, phase shift = 2.

The general form of cosine function is

[tex]f(x)=A\cos (Bx-C)+D[/tex]                ..... (1)

where, |A| is amplitude, [tex]\frac{2\pi}{B}[/tex] is period, C/B is phase shift and D is midline.

From the given information we conclude that

[tex]|A|=2[/tex]

[tex]\frac{2\pi}{B}=6[/tex]

[tex]\frac{2\pi}{6}=B[/tex]

[tex]\frac{\pi}{3}=B[/tex]

[tex]\text{Phase shift}=\frac{C}{B}[/tex]

[tex]\text{Phase shift}\times B=C[/tex]

[tex]2\times \frac{\pi}{3}=C[/tex]

[tex]\frac{2\pi}{3}=C[/tex]

Substitute A=2, [tex]B=\frac{\pi}{3}[/tex] and [tex]C=\frac{2\pi}{3}[/tex] and D=0 in equation (1).

[tex]f(x)=2\cos (\frac{\pi}{3}x-\frac{2\pi}{3})+0[/tex]

[tex]f(x)=2\cos (\frac{\pi}{3}x-\frac{2\pi}{3})[/tex]

Therefore, the required function is [tex]f(x)=2\cos (\frac{\pi}{3}x-\frac{2\pi}{3})[/tex].