Respuesta :

Answer:

The equations of the two tangents are [tex]y=12x[/tex] and [tex]y=-12x[/tex].

Step-by-step explanation:

The given curve is

[tex]y=2x^2+18[/tex]           .... (1)

Let the point of tangency is at (a,b).

[tex]b=2a^2+18[/tex]             .... (2)

Differentiate (1) with respect to x.

[tex]\frac{dy}{dx}=2(2x)+(0)[/tex]

[tex]\frac{dy}{dx}=4x[/tex]

[tex]\frac{dy}{dx}_{(a,b)}=4a[/tex]

The slope of tangent is 4a.

It is given that tangent passes through the point (a,b) with slope 4a. So, equation of tangent is

[tex]y-y_1=m(x-x_1)[/tex]

where, m is slope.

[tex]y-b=4a(x-a)[/tex]         ... (3)

The line passes through the point (0,0).

[tex]0-b=4a(0-a)[/tex]

[tex]-b=4a(-a)[/tex]

[tex]b=4a^2[/tex]             .... (4)

From (1) and (4) we get

[tex]4a^2=2a^2+18[/tex]

[tex]4a^2-2a^2=18[/tex]

[tex]2a^2=18[/tex]

[tex]a^2=9[/tex]

Taking square root on both sides.

[tex]a=\pm 3[/tex]

Substitute [tex]a^2=9[/tex] in equation (4).

[tex]b=4(9)=36[/tex]

The points of tangency are (3,36) and (-3,36).

Substitute the value of a and b in equation (3) to find the equations of tangents.

For (3,36),

[tex]y-36=4(3)(x-3)[/tex]

[tex]y-36=12x-36[/tex]

[tex]y=12x[/tex]

For (-3,36),

[tex]y-36=4(-3)(x-(-3))[/tex]

[tex]y-36=-12x-36[/tex]

[tex]y=-12x[/tex]

Therefore, the equations of the two tangents are [tex]y=12x[/tex] and [tex]y=-12x[/tex].