Respuesta :

Answer:

The zeros of the given polynomial function are

2,2,[tex]\pm\sqrt{5}[/tex]

Step-by-step explanation:

Given polynomial is [tex]P(x)=x^4-4x^3-x^2+20x-20[/tex]

To find the zeros equate the given polynomial to zero

ie., P(x)=0

[tex]P(x)=x^4-4x^3-x^2+20x-20=0[/tex]

By using synthetic division we can solve the polynomial:

2_|   1     -4     -1      20      -20

       0      2     -4     -10       20

   _____________________

       1     -2      -5      10      |_0

Therefore x-2=0

x=2 is a zero of P(x)

Now we can write the cubic equation as below:

[tex]x^3-2x^2-5x+10=0[/tex]

Again using synthetic division

2_|   1     -2     -5     10      

       0      2      0    -10    

    ______________

       1      0      -5     |_0

Therefore x-2=0

x=2 is also a zero of P(x).

Now we have [tex]x^2+0x-5=0[/tex]

[tex]x^2-5=0[/tex]

[tex]x^2=5[/tex]

[tex]x^=\pm\sqrt{5}[/tex] is a zero of P(x)

Therefore the zeros are 2,2,[tex]\pm\sqrt{5}[/tex]