Respuesta :

Answer:  The required value of [tex]\dfrac{dy}{dx}[/tex] is [tex]\dfrac{y}{1-y}.[/tex]

Step-by-step explanation:   We are given to find the value of [tex]\dfrac{dy}{dx}[/tex] from the following equation :

[tex]e^{x+y}=y~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)[/tex]

Taking natural logarithm on both sides of equation (i), we have

[tex]\ln e^{x+y}=\ln y\\\\\Rightarrow x+y=\ln y~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(ii)[/tex]

Differentiating both sides of equation (ii) with respect to x, we get

[tex]\dfrac{d}{dx}(x+y)=\dfrac{d}{dx}\ln y\\\\\\\Rightarrow 1+\dfrac{dy}{dx}=\dfrac{1}{y}\dfrac{dy}{dx}\\\\\\\Rightarrow \left(\dfrac{1}{y}-1\right)\dfrac{dy}{dx}=1\\\\\\\Rightarrow \dfrac{1-y}{y}\dfrac{dy}{dx}=1\\\\\\\Rightarrow \dfrac{dy}{dx}=\dfrac{y}{1-y}.[/tex]

Thus, the required value of [tex]\dfrac{dy}{dx}[/tex] is [tex]\dfrac{y}{1-y}.[/tex]