Respuesta :
Answer:
[tex]\displaystyle \int\limits^4_0 {(1 + 3y - y^2)} \, dy = \frac{20}{3}[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Calculus
Integrals
- Definite Integrals
Integration Constant C
Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Rule [Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Integration Property [Addition/Subtraction]: [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle \int\limits^4_0 {(1 + 3y - y^2)} \, dy[/tex]
Step 2: Integrate
- [Integral] Rewrite [Integration Property - Addition/Subtraction]: [tex]\displaystyle \int\limits^4_0 {(1 + 3y - y^2)} \, dy = \int\limits^4_0 {} \, dy + \int\limits^4_0 {3y} \, dy - \int\limits^4_0 {y^2} \, dy[/tex]
- [2nd Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int\limits^4_0 {(1 + 3y - y^2)} \, dy = \int\limits^4_0 {} \, dy + 3\int\limits^4_0 {y} \, dy - \int\limits^4_0 {y^2} \, dy[/tex]
- [Integrals] Reverse Power Rule: [tex]\displaystyle \int\limits^4_0 {(1 + 3y - y^2)} \, dy = y \bigg| \limits^4_0 + 3(\frac{y^2}{2}) \bigg| \limits^4_0 - (\frac{y^3}{3}) \bigg| \limits^4_0[/tex]
- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^4_0 {(1 + 3y - y^2)} \, dy = 4 + 3(8) - \frac{64}{3}[/tex]
- Simplify: [tex]\displaystyle \int\limits^4_0 {(1 + 3y - y^2)} \, dy = \frac{20}{3}[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e