A,b,c,d each have some money. the amt A has is 1/3 total of b,c and d. the amt b has is 1/4 total of a,c,d. the amt c has is 1/5 total of a,b,d. if d has $1725, how much do they have altogether?

Respuesta :

Answer:

$4500

Step-by-step explanation:

The amount a has is 1/3 total of b, c, and d

[tex]a=1/3(b+c+d)[/tex]    eq. 1

The amount b has is 1/4 total of a, c, and d

[tex]b=1/4(a+c+d)[/tex]    eq. 2

The amount c has is 1/5 total of a, b, and d

[tex]c=1/5(a+b+d)[/tex]    eq. 3

[tex]d=1725[/tex]

substitute the value of [tex]d=1725[/tex] in above equations

[tex]3a=b+c+1725[/tex]

[tex]4b=a+c+1725[/tex]

[tex]5c=a+b+1725[/tex]

Rearrange the equations to form matrices

[tex]3a-b-c=1725[/tex]

[tex]-a+4b-c=1725[/tex]

[tex]-a-b+5c=1725 [/tex]

[tex]X=\left[\begin{array}{c}a&b&c\\\end{array}\right][/tex]

[tex]A=\left[\begin{array}{ccc}3&-1&-1\\-1&4&-1\\-1&-1&5\end{array}\right][/tex]

[tex]B=\left[\begin{array}{c}1725&1725&1725\\\end{array}\right][/tex]

As we know

[tex]AX=B[/tex]

To find the values of matrix X, we take inverse of matrix A and multiply it with matrix B

[tex]X=A^{-1} B[/tex]

[tex]\left[\begin{array}{c}a&b&c\\\end{array}\right]=\left[\begin{array}{ccc}3&-1&-1\\-1&4&-1\\-1&-1&5\end{array}\right]^{-1} \left[\begin{array}{c}1725&1725&1725\\\end{array}\right][/tex]

Solving using calculator yield the following results

[tex]X=\left[\begin{array}{c}1125&900&750\\\end{array}\right][/tex]

so,

[tex]a=1125\\b=900\\c=750\\d=1725\\[/tex]

Finally, altogether they have

[tex]1125+900+750+1725=4500[/tex]

Verification:

Lets verify if have got the right answer!

Substitute the amount of b, c, and d in eq. 1

[tex]a=1/3(b+c+d)[/tex]

[tex]a=1/3(900+750+1725)[/tex]

[tex]a=1/3(3375)[/tex]

[tex]a=1125[/tex]   (proved)

Substitute the amount of a, c, and d in eq. 2

[tex]b=1/4(a+c+d)[/tex]

[tex]b=1/4(1125+750+1725)[/tex]

[tex]b=1/4(3600)[/tex]

[tex]b=900[/tex]    (proved)

Substitute the amount of a, b, and d in eq. 3

[tex]c=1/5(a+b+d)[/tex]

[tex]c=1/5(1125+900+1725)[/tex]

[tex]c=1/5(3750)[/tex]

[tex]c=750[/tex]    (proved)