Respuesta :

Answer:

[tex]V=\frac{1}{3}\pi h^3[/tex]

Step-by-step explanation:

It is given that the shape of a pile of sand is conical.

Diameter of cone is twice the height.

Let height of cone be h.

Diameter of cone = 2h

Radius of the cone = [tex]\frac{2h}{2}=h[/tex]

It means radius of the cone is h.

Volume of cone is

[tex]V=\frac{1}{3}\pi r^2h[/tex]

where, r is radius and h is height of the cone.

Substitute r=h in the above formula.

[tex]V=\frac{1}{3}\pi (h)^2h[/tex]

[tex]V=\frac{1}{3}\pi (h)^{2+1}[/tex]

[tex]V=\frac{1}{3}\pi (h)^{3}[/tex]

Therefore, the volume of pile of sand is [tex]V=\frac{1}{3}\pi h^3[/tex].