a. Evaluate x^2 when x = 7.
b. Evaluate √x when x = 81.
c. Evaluate x^3 when x = 5.
d. Evaluate √x when x = 27.

Respuesta :

Answer:

a) [tex]49[/tex]

b) [tex]9[/tex]

c) [tex]125[/tex]

d) [tex]3\sqrt{3}[/tex]

Step-by-step explanation:

a. Evaluate x^2 when x = 7.

saying [tex]x^2[/tex] is the same as saying [tex]x \times x[/tex]

so, when [tex]x=7[/tex], it means [tex]7 \times 7[/tex]

[tex]7^2[/tex]

[tex]7 \times 7[/tex]

[tex]49[/tex]

b. Evaluate √x when x = 81.

[tex]\sqrt{x}[/tex] is the opposite of [tex]x^2[/tex]. It shows that, if there's a number 81, then what number multiplied with itself twice to make 81?

----------

More generally, if there's a number [tex]x^2[/tex] then the square root shows that the number [tex]x[/tex] multiplied with itself twice to make [tex]x^2[/tex]. Hence [tex]\sqrt{x \times x}\,\text{is}\,x [/tex]

[tex]\sqrt{x\times x} = \sqrt{x^2} = x[/tex]

------------

we know that [tex]9 \times 9\,\text{is}\,81[/tex]

we can write

[tex]\sqrt{81}[/tex]

[tex]\sqrt{9 \times 9}[/tex]

[tex]9[/tex]

c. Evaluate x^3 when x = 5.

Just as [tex]x^2 = x\timesx[/tex]

similarly,[tex]x^3 = x\timesx\timesx[/tex],

so when x=5.

[tex]x^3 = x\timesx\timesx[/tex]

[tex]5^3 = 5\times5\times5[/tex]

[tex]125[/tex]

d. Evaluate √x when x = 27.

We know that [tex]x = 27[/tex],

we also know that[tex]x = 3\times9[/tex]

we break this further[tex]x = 3\times3\times3[/tex]

the square root takes shows the number that multiples with itself twice

Here we 3 multiplying itself three times within the square root!

but no worries, we're only going to take two 3's from here.

[tex]\sqrt{x} = \sqrt{3\times3\times3}[/tex]

we're only going to select two 3's within the square root and reveal the answer.

another to think about this is:

[tex]\sqrt{x} = \sqrt{9\times3}[/tex]

9 is a number that is 3 x 3 hence [tex]sqrt{9} = 3[/tex]

so our answer will be:

[tex]\sqrt{x} = 3\sqrt{3}[/tex]

Answer:

b. 2 (square root) 2 (decimal form ( 2.8284...))

C. ???

D. 3 (square root) 3

Step-by-step explanation: