If A,B,C and D are nonzero numbers such that c and d are solutions
of x^2 + Ax + B =0 and x^2 + Cx + D = 0, find A + B + C + D.

i) -2 ii) -1 iii) 0 iv) 1 v) 2.

Provide intuitive answer.

Respuesta :

Answer:

i) -2

Step-by-step explanation:

In mathematics, Vieta's formulas relate the coefficients of a polynomial to sums and products of its roots.

c and d are solutions(roots)  of [tex]x^2 + Ax + B=0[/tex]

a and b are solutions(roots)  of [tex]x^2 + Cx + D = 0[/tex]

[tex]c+d=-a[/tex]  eq. 1

[tex]cd=b[/tex]  eq. 2

[tex]a+b=-c[/tex] eq. 3

[tex]ab=d[/tex] eq. 4

from eq. 1 we get [tex]d=-a-c[/tex]

from eq. 3 we get [tex]b=-a-c[/tex]

so [tex]d=b[/tex]

now substitute [tex]d=b[/tex] in eq. 2

[tex]cb=b[/tex]

[tex]c=b/b=1[/tex]

now substitute [tex]d=b[/tex] in eq. 4

[tex]ab=d[/tex]

[tex]ad=d[/tex]

[tex]a=d/d=1[/tex]

now substitute the values of [tex]c=1 and a=1[/tex] in eq. 1

[tex]d=-a-c=-1-1=-2[/tex]

similarly, substitute the values of [tex]c=1 and a=1[/tex] in eq. 3

[tex]b=-a-c=-1-1=-2[/tex]

Finally,

[tex]A+B+C+D= 1-2+1-2=-2[/tex]

Lets verify and see if our answer is right!

[tex]x^2 + Ax + B =0[/tex]

Substituting the values of A and B

[tex]X^2+x-2=0[/tex]

we know that c and d are solutions of this equation so they must satisfy the equation.

put [tex]c=1[/tex]

[tex](1)^2+1-2=0[/tex]

[tex]2-2=0[/tex]

[tex]0=0[/tex] (proved)

put [tex]d=-2[/tex]

[tex](-2)^2-2-2=0[/tex]

[tex]4-4=0[/tex]

[tex]0=0[/tex] (proved)