Answer: 586.59 cubic centimeters .
Step-by-step explanation:
As per given . we have
Inner diameter = 1.8 inches
⇒Inner radius :r = 0.9 in. (radius is half of diameter)
= 0.9 x (2.54) = 2.286 cm [∵ 1 in . = 2.54 cm]
Outer diameter = 2 inches
⇒Outer radius : R = 1 inch = 2.54 cm
Height : h = 5 feet = 5 x(30.48) = 152.4 cm [∵ 1 foot = 30.48 cm]
The formula to find the volume of a hollow cylinder :
[tex]V=\pi(R^2-r^2)h[/tex] , where R= outer radius , r= inner radius and h= height.
Now , the volume of metal in the conduit :
[tex]V=(3.14)(( 2.54)^2-(2.286)^2)(152.4)[/tex]
[tex]V=(3.14)(6.4516-5.225796)(152.4)[/tex]
[tex]V=(3.14)(1.225804)(152.4)[/tex]
[tex]V=586.591342944\approx586.59\ cm^3[/tex]
Hence, the volume of metal in the conduit is 586.59 cubic centimeters .