The height of Stephanie's kite above the ground is 11 feet less than twice the distance from stepahnie, who is flying the kite to a point below it.Stephanie has let out 53 feet of string to the kite. How high is the kite?

Respuesta :

Answer:

45 feet

Step-by-step explanation:

Let x be the distance of Stephanie from the point on the ground

Height of kite=[tex]2x-11[/tex]

Length of string=53 feet

Pythagoras theorem

[tex](Hypotenuse)^2=(Base)^2+(Perpendiculars\;side)^2[/tex]

By using Pythagoras theorem

[tex]AC^2=AB^2+BC^2[/tex]

[tex](53)^2=x^2+(2x-11)^2[/tex]

[tex]x^2+4x^2+121-44x=2809[/tex]

[tex]5x^2-44x+121-2809=0[/tex]

[tex]5x^2-44x-2688=0[/tex]

[tex]5x^2-140x+96x-2688=0[/tex]

[tex]5x(x-28)+96(x-28)=0[/tex]

[tex](x-28)(5x+96)=0[/tex]

[tex]x-28=0\implies x=28[/tex]

[tex]5x+96=0[/tex]

[tex]5x=-96[/tex]

[tex]x=-\frac{96}{5}[/tex]

It is not possible because distance cannot be negative.

x=28 feet

Substitute the value of x

Height of kite above the ground=2(28)-11=45 feet

Therefore,height of kite from the ground=45 feet

Ver imagen lublana