Find the area of a triangle with vertices: (2,0,0),(0,3,0),
and (1,1,4) using the dot product only. Verify youranswer is
correct by using Heron's formula.

Respuesta :

Answer:

a. The area of the triangle is [tex]Area=\frac{1}{2}\sqrt{209}\approx 7.228[/tex]

b.  Using Heron's formula the area is [tex]Area=\sqrt{52.25} \approx 7.228[/tex]

Step-by-step explanation:

a. The magnitude of the product u × v is by definition the area of the parallelogram spanned by u and v when placed tail-to-tail. Hence we can use the vector product to compute the area of a triangle formed by three points A, B and C in space.

It follows that the area of the triangle is

[tex]Area=\frac{1}{2} |\vec{AB}\times \vec{AC}|[/tex]

Let A = (2, 0, 0), B = (0, 3, 0), and C = (1, 1, 4).

We have [tex]\vec{AB}=(0,3,0)-(2,0,0)=(-2,3,0)[/tex] and [tex]\vec{AC}=(1,1,4)-(2,0,0)=(-1,1,4)[/tex]

The cross product of two vectors [tex]a=<a_1,a_2,a_3>[/tex] and [tex]b=<b_1,b_2,b_3>[/tex] is given by

[tex]\vec{a}\times \vec{b}=<a_2b_3-a_3b_2,a_3b_1-a_1b_3,a_1b_2-a_2b_1>[/tex]

Applying the above formula we get

[tex]\vec{AB}\times \vec{AC}=(3\cdot(4)-(1)\cdot(0))-(-2\cdot(4)-(-1)\cdot(0))+(-2\cdot(1)-(-1)\cdot(3))\\\vec{AB}\times \vec{AC}=(12,8,1)[/tex]

The magnitude of a vector is given by

[tex]\|\vc{a}\| = \sqrt{a_1^2+a_2^2+a_3^2}.[/tex]

Thus,

[tex]|\vec{AB}\times \vec{AC}|=\sqrt{12^2+8^2+1^2}\\ |\vec{AB}\times \vec{AC}|=\sqrt{209}[/tex]

The area of the triangle is

[tex]Area=\frac{1}{2}\sqrt{209}\approx 7.228[/tex]

b. The Heron's formula is given by

[tex]A = \sqrt{s(s-a)(s-b)(s-c)}[/tex]

where [tex]s=\frac{a+b+c}{2}[/tex] and a, b, and c are the sides of the triangle.

To find the sides of the triangle given the vertices you must,

  • Compute side a, b, and c from coordinates using the Pythagorean theorem

[tex]a=|BC|=|B-C|\\a^2=(B_x-C_x)^2+(B_y-C_y)^2+(B_z-C_z)^2\\a=\sqrt{(B_x-C_x)^2+(B_y-C_y)^2+(B_z-C_z)^2} \\a=\sqrt{(0-1)^2+(3-1)^2+(0-4)^2} \\a=\sqrt{21}=4.58[/tex]

[tex]b=|AC|=|A-C|\\b^2=(A_x-C_x)^2+(A_y-C_y)^2+(A_z-C_z)^2\\b=\sqrt{(A_x-C_x)^2+(A_y-C_y)^2+(A_z-C_z)^2} \\b=\sqrt{(2-1)^2+(0-1)^2+(0-4)^2} \\b=\sqrt{18}=4.24[/tex]

[tex]c=|AB|=|A-B|\\c^2=(A_x-B_x)^2+(A_y-B_y)^2+(A_z-B_z)^2\\c=\sqrt{(A_x-B_x)^2+(A_y-B_y)^2+(A_z-B_z)^2} \\c=\sqrt{(2-0)^2+(0-3)^2+(0-0)^2} \\c=\sqrt{13}=3.61[/tex]

  • Find the value of s

[tex]s=\frac{4.58+4.24+3.61}{2} =6.22[/tex]

  • Apply the Heron's formula

[tex]A = \sqrt{s(s-a)(s-b)(s-c)}\\\\A=\sqrt{6.22(6.22-4.58)(6.22-4.24)(6.22-3.61)}\\\\A=\sqrt{52.25} \approx 7.228[/tex]

Ver imagen franciscocruz28
Ver imagen franciscocruz28

Answer:

The magnitude of the product u × v is by definition the area of the parallelogram spanned by u and v when placed tail-to-tail. Hence we can use the vector product to compute the area of a triangle formed by three points A, B and C in space.

It follows that the area of the triangle is

Let A = (2, 0, 0), B = (0, 3, 0), and C = (1, 1, 4).

We have  and

The cross product of two vectors  and  is given by

Applying the above formula we get

The magnitude of a vector is given by

Thus,

The area of the triangle is

b. The Heron's formula is given by

where  and a, b, and c are the sides of the triangle.

To find the sides of the triangle given the vertices you must,

Compute side a, b, and c from coordinates using the Pythagorean theorem

Find the value of s

Apply the Heron's formula

Step-by-step explanation: