Respuesta :

Answer:

[tex]\log_{2} [\frac{x^{3}(x + 4)}{3}][/tex]

Step-by-step explanation:

We have to write the following logarithmic expression as a single logarithm.

The given expression is

[tex]3\log_{2} x - [\log_{2} 3 - \log_{2}(x + 4)][/tex]

= [tex]3\log_{2} x - \log_{2} (\frac{3}{x + 4})[/tex]

{Since, [tex]\log A - \log B = \log \frac{A}{B}[/tex], from the properties of logarithmic function }

= [tex]\log_{2} x^{3}  - \log_{2} (\frac{3}{x + 4})[/tex]

{Since, [tex]a\log b = \log b^{a}[/tex], which also a logarithmic property}

= [tex]\log_{2} [\frac{x^{3}}{\frac{3}{x + 4}}][/tex]

= [tex]\log_{2} [\frac{x^{3}(x + 4)}{3}][/tex] (Answer)

Answer:

A

Step-by-step explanation:

Edge 2020