9. Henri and Terence drew samples of size 50 from a mystery bag. Henri drew 42 red chips, and Terence drew 40 red chips. Find the margins of error for each student.

Respuesta :

Answer:

Henri’s margin of error = 0.104

Terence’s margin of error = 0.113

Step-by-step explanation:

It is given that Henri and Terence drew samples of size 50 from a mystery bag.

Formula for margin of error

[tex]M.E.=2\sqrt{\dfrac{p(1-p)}{n}}[/tex]           ... (1)

where, p is the proportion.

Henri drew 42 red chips out of 50.

Proportion of getting red chip = [tex]\frac{42}{50}=0.84[/tex]

Substitute p=0.84 and n=50 in equation (1).

[tex]M.E.=2\sqrt{\dfrac{(0.84)(1-0.84)}{50}}[/tex]

[tex]M.E.=2\sqrt{\dfrac{(0.84)(0.16)}{50}}[/tex]

[tex]M.E.=0.10369[/tex]

[tex]M.E.\approx 0.104[/tex]

Henri’s margin of error is 0.104.

Terence drew 40 red chips.

Proportion of getting red chip = [tex]\frac{40}{50}=0.8[/tex]

Substitute p=0.8 and n=50 in equation (1).

[tex]M.E.=2\sqrt{\dfrac{(0.8)(1-0.8)}{50}}[/tex]

[tex]M.E.=2\sqrt{\dfrac{(0.8)(0.2)}{50}}[/tex]

[tex]M.E.=0.113137[/tex]

[tex]M.E.\approx 0.113[/tex]

Terence’s estimated margin of error is 0.113.

Answer:

The margins of error for Henri is 0.104.

The margins of error for Terence is 0.113.

Step-by-step explanation:

Consider the provided information.

Henri and Terence drew samples of size 50 from a mystery bag.

Henri drew 42 red chips,

[tex]\hat p=\frac{42}{50}=0.84[/tex]

The formula to calculate margins of error is: [tex]2\sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]

Substitute n = 50 and [tex]\hat p=0.84[/tex] in above formula.

Margin of error for Henri = [tex]2\sqrt{\frac{0.84(1-0.84)}{50}}[/tex]

Margin of error for Henri = [tex]2\sqrt{\frac{0.84(0.16)}{50}}[/tex]

Margin of error for Henri ≈ 0.104

Hence, the margins of error for Henri is 0.104.

Terence drew 40 red chips,

[tex]\hat p=\frac{40}{50}=0.84[/tex]

The formula to calculate margins of error is: [tex]2\sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]

Substitute n = 50 and [tex]\hat p=0.80[/tex] in above formula.

Margin of error for Terence  = [tex]2\sqrt{\frac{0.80(1-0.80)}{50}}[/tex]

Margin of error for Terence = [tex]2\sqrt{\frac{0.8(0.2)}{50}}[/tex]

Margin of error for Terence ≈ 0.113

Hence, the margins of error for Terence is 0.113.