contestada

A regular square pyramid has base edges of length 16 and its lateral faces are inclined 30­° to the base of the pyramid. What is the: 1) height of the pyramid? 2) volume of the pyramid?

Respuesta :

Answer:

1) [tex]h=\frac{8\sqrt{3}}{3}\ units[/tex]

2) [tex]V=\frac{2,048\sqrt{3}}{9}\ units^3[/tex]

Step-by-step explanation:

Part 1) Find the height of the pyramid

we know that

[tex]tan(30^o)=\frac{h}{(b/2)}[/tex]

where

h is the height of the pyramid

b is the length side of the square base

we have

[tex]tan(30^o)=\frac{\sqrt{3}}{3}[/tex]

[tex]b=16\ units[/tex]

substitute

[tex]\frac{\sqrt{3}}{3}=\frac{h}{(16/2)}[/tex]

[tex]\frac{\sqrt{3}}{3}=\frac{h}{8}[/tex]

[tex]h=\frac{8\sqrt{3}}{3}\ units[/tex]

Part 2) Find the volume of the pyramid

we know that

The volume of the pyramid is equal to

[tex]V=\frac{1}{3} Bh[/tex]

where

B is the area of the square base

h is the height of the pyramid

we have

[tex]B=(16^2)=256\ units^2[/tex]

[tex]h=\frac{8\sqrt{3}}{3}\ units[/tex]

substitute

[tex]V=\frac{1}{3} (256)(\frac{8\sqrt{3}}{3})[/tex]

[tex]V=\frac{2,048\sqrt{3}}{9}\ units^3[/tex]