Respuesta :

Answer:

[tex]V =\dfrac{32}{3}\pi[/tex]

Step-by-step explanation:

given,

radius of sphere = 3

volume of cone:

[tex]V = \dfrac{1}{3}\pi r^2h[/tex]

r is the radius of circular base

h is the height of the cone

here r = x and h = 3 + y

now, volume in term of x and y

[tex]V = \dfrac{1}{3}\pi x^2(3+y)[/tex]

Applying Pythagoras theorem

x² + y² = 3²

[tex]x = \sqrt{9-y^2}[/tex]

[tex]V = \dfrac{1}{3}\pi ( \sqrt{9-y^2})^2(3+y)[/tex]

[tex]V = \dfrac{1}{3}\pi ( 9-y^2)(3+y)[/tex]

[tex]V = \dfrac{1}{3}\pi (27 + 9 y - 3 y^2-y^3)[/tex]

differentiating both side

[tex]\dfrac{dV}{dy} =\dfrac{1}{3}\pi ( 9-6y- 3y^2)[/tex]

for maxima  [tex]\dfrac{dV}{dy} = 0 [/tex]

[tex]\pi ( 3-2 y - y^2)=0[/tex]

 y² + 2 y - 3 = 0

(y+3)(y-1)=0

 y = 1,-3

y cannot be negative so, volume at y = 1

[tex]V = \dfrac{1}{3}\pi (27 + 9 (1)- 3(1)^2-(1)^3)[/tex]

[tex]V =\dfrac{32}{3}\pi[/tex]

Hence, the largest cone which can be inscribed in the spheres of the radius 3 has volume  [tex]V =\dfrac{32}{3}\pi[/tex]