Respuesta :

Answer: a. Radius of circle = [tex]\sqrt{85}[/tex]

b. The equation of this circle : [tex](x-3)^2+(y-10)^2=85[/tex]

Step-by-step explanation:

Given : Center of the circle = (3,10)

Circle is passing through (12,12).

a. To find the radius we apply distance formula (∵ Radius is the distance from center to any point ion the circle.)

Radius of circle = [tex]\sqrt{(12-3)^2+(12-10)^2}[/tex]

Radius of circle = [tex]\sqrt{(9)^2+(2)^2}=\sqrt{81+4}=\sqrt{85}[/tex]

i.e. Radius of circle = [tex]\sqrt{85}[/tex]

b. Equation of a circle = [tex](x-h)^2+(y-k)^2=r^2[/tex] , where (h,k)=Center and r=radius of the circle.

Put the values of (h,k)= (3,10) and r= [tex]\sqrt{85}[/tex] , we get

[tex](x-3)^2+(y-10)^2=(\sqrt{85})^2[/tex]

[tex](x-3)^2+(y-10)^2=85[/tex]

∴  The equation of this circle :[tex](x-3)^2+(y-10)^2=85[/tex]