Answer:
The third angle of isosceles triangle is 106° .
Step-by-step explanation:
Given as :
The measures of equal angles of isosceles triangle = 37°
i.e [tex]\Theta _1[/tex] = [tex]\Theta _2[/tex] = 37°
Let The third angle of isosceles triangle = [tex]\Theta _3[/tex]
Now,
An isosceles triangle is that whose opposite sides are equal and two angles are equal
Now, From the property of Triangle
The sum of all three angles of Triangle = 180°
i.e [tex]\Theta _1[/tex] + [tex]\Theta _2[/tex] + [tex]\Theta _3[/tex] = 180°
∵ [tex]\Theta _1[/tex] = [tex]\Theta _2[/tex] = 37° (given)
So, 37° + 37° + [tex]\Theta _3[/tex] = 180°
Or, 74° + [tex]\Theta _3[/tex] = 180°
Or, [tex]\Theta _3[/tex] = 180° - 74°
∴ [tex]\Theta _3[/tex] = 106°
So, The third angle of isosceles triangle = [tex]\Theta _3[/tex] = 106°
Hence,The third angle of isosceles triangle is 106° . Answer