Billie solved the equation below by completing the square, but she got the incorrect solution. In which step did Billie first make an error? Choices: 1234

Step 1: x^2+10x=49

Step 2: x^2+10x+25=49

Step 3: (x+5)^2=49

Step 4: x+5=+-7

Step 5: x=2, x=–12

Respuesta :

Answer:

step 2

Step-by-step explanation:

we have

[tex]x^{2} +10x-49=0[/tex] ---> given problem

step 1

Move the constant to the right side

[tex]x^{2} +10x=49[/tex]

the step 1 is correct

step 2

Complete the square

[tex]x^{2} +10x+5^2=49+5^2[/tex]

[tex]x^{2} +10x+5^2=74[/tex]

The step 2 is not correct

step 3

Rewrite as perfect squares

[tex](x+5)^{2}=74[/tex]

step 4

take square root both sides

[tex]x+5=\pm\sqrt{74}[/tex]

step 5

Find the values of x

[tex]x=-5\pm\sqrt{74}[/tex]

[tex]x=-5+\sqrt{74}[/tex]

[tex]x=-5-\sqrt{74}[/tex]