Respuesta :

Answer:

The point of intersection of given polynomials is ( - 5 , - 1 ) .

Step-by-step explanation:

Given as :

The two polynomials are

y = [tex]\dfrac{2}{5}[/tex] x + 1            ........A

y = [tex]\dfrac{ - 2}{5}[/tex] x - 3         ........B

Let The point of intersection = p = x,y

Now, Solving the equation A and B

So, Putting the value of y from Eq A into Eq B

i.e [tex]\dfrac{2}{5}[/tex] x + 1 = [tex]\dfrac{ - 2}{5}[/tex] x - 3

Rearranging the equation

Or, [tex]\dfrac{2}{5}[/tex] x - ([tex]\dfrac{- 2}{5}[/tex] x) = - 3 - 1

Or, [tex]\dfrac{2}{5}[/tex] x + [tex]\dfrac{ 2}{5}[/tex] x = - 3 - 1

Or, ( [tex]\dfrac{2}{5}[/tex] +  [tex]\dfrac{2}{5}[/tex] ) x = - 4

Or, ( [tex]\dfrac{2 + 2}{5}[/tex]) x = - 4

Or,  ( [tex]\dfrac{4}{5}[/tex] ) x = - 4

∴  x = [tex]\dfrac{- 4\times 5}{4}[/tex]

i.e x = - 5

So The value of x = - 5

now put the vale of x into eq B

∵y = [tex]\dfrac{ - 2}{5}[/tex] x - 3    

So, y = [tex]\dfrac{ - 2}{5}[/tex] × (-5) - 3    

Or, y = [tex]\dfrac{- 2\times (-5)}{5}[/tex] - 3

Or, y = 2 - 3

i.e y = - 1

So The value of y = - 1

So,The point of intersection = p = x , y = - 5 , - 1

Hence, The point of intersection of given polynomials is ( - 5 , - 1 ) . Answer