Answer:
The point of intersection of given polynomials is ( - 5 , - 1 ) .
Step-by-step explanation:
Given as :
The two polynomials are
y = [tex]\dfrac{2}{5}[/tex] x + 1 ........A
y = [tex]\dfrac{ - 2}{5}[/tex] x - 3 ........B
Let The point of intersection = p = x,y
Now, Solving the equation A and B
So, Putting the value of y from Eq A into Eq B
i.e [tex]\dfrac{2}{5}[/tex] x + 1 = [tex]\dfrac{ - 2}{5}[/tex] x - 3
Rearranging the equation
Or, [tex]\dfrac{2}{5}[/tex] x - ([tex]\dfrac{- 2}{5}[/tex] x) = - 3 - 1
Or, [tex]\dfrac{2}{5}[/tex] x + [tex]\dfrac{ 2}{5}[/tex] x = - 3 - 1
Or, ( [tex]\dfrac{2}{5}[/tex] + [tex]\dfrac{2}{5}[/tex] ) x = - 4
Or, ( [tex]\dfrac{2 + 2}{5}[/tex]) x = - 4
Or, ( [tex]\dfrac{4}{5}[/tex] ) x = - 4
∴ x = [tex]\dfrac{- 4\times 5}{4}[/tex]
i.e x = - 5
So The value of x = - 5
now put the vale of x into eq B
∵y = [tex]\dfrac{ - 2}{5}[/tex] x - 3
So, y = [tex]\dfrac{ - 2}{5}[/tex] × (-5) - 3
Or, y = [tex]\dfrac{- 2\times (-5)}{5}[/tex] - 3
Or, y = 2 - 3
i.e y = - 1
So The value of y = - 1
So,The point of intersection = p = x , y = - 5 , - 1
Hence, The point of intersection of given polynomials is ( - 5 , - 1 ) . Answer