Calculate the cenrtripetal acceleration of the Earth in
itsorbit around the Sun, and the net force exerted on the Earth.
Whatexerts this force on the Earth? Assume that the Earth's orbit
isorbit is a circle of radius 1.50 x 10-11m.

Respuesta :

Answer:

[tex]0.00594\ m/s^2\ \text{towards the Sun}[/tex]

[tex]3.54737\times 10^{22}\ N[/tex]

Explanation:

r = Distance between Earth and Sun = [tex]1.5\times 10^{11}\ m[/tex]

Time taken to complete one rotation around Sun is given by

[tex]T=365.25\times 24\times 3600[/tex]

Centripetal acceleration is given by

[tex]a=\dfrac{v^2}{r}\\\Rightarrow \\\Rightarrow a=\dfrac{(\dfrac{2\pi r}{T})^2}{r}\\\Rightarrow a=\dfrac{4\pi^2r}{T^2}\\\Rightarrow a=\dfrac{4\pi^2\times 1.5\times 10^{11}}{(365.25\times 24\times 3600)^2}\\\Rightarrow a=0.00594\ m/s^2\ \text{towards the Sun}[/tex]

The centripetal acceleration of the Earth in its orbit is [tex]0.00594\ m/s^2\ \text{towards the Sun}[/tex]

Force is given by

[tex]F=ma\\\Rightarrow F=5.972\times 10^{24}\times 0.00594\\\Rightarrow F=3.54737\times 10^{22}\ N[/tex]

The force on the Earth is [tex]3.54737\times 10^{22}\ N[/tex]