Heat is extracted from a certain quantity of steam at
100degrees C. As a result, the steam changes into ice at 0.0degrees
C. If this energy were used to accelerate the icefrom rest, what
would be the linear speed of ice? Forcomparison, bullet speeds of
about 700 m/s are common.

Respuesta :

Answer:[tex]v=2452.91 m/s[/tex]

Explanation:

Given

initially steam is at [tex]100^{\circ}C[/tex] and converted to [tex]0^{\circ} C[/tex] ice

Let m be the mass of steam

latent heat of fusion and vaporization for water is

[tex]L_f=3.33\times 10^5 J/kg[/tex]

[tex]L_v=2.26\times 10^6 J/kg[/tex]

Heat required to convert steam in to water at [tex]100^{\circ}C[/tex]

[tex]Q_1=m\times L_v=m\cdot 2.26\times 10^6 J[/tex]

Heat required to lower water temperature to [tex]0^{\circ}C[/tex]

[tex]Q_2=m\times c\times \Delta T[/tex]

[tex]Q_2=m\times 4.184\times (100)[/tex]

[tex]Q_2=4.184m\times 10^5 J[/tex]

Heat required to convert [tex]0^{\circ}C[/tex] water to ice at [tex]0^{\circ}C[/tex] is

[tex]Q_3=m\times L_f[/tex]

[tex]Q_3=m\times 3.33\times 10^5=3.33m\times 10^5 J[/tex]

[tex]Q=Q_1+Q_2+Q_3[/tex]

[tex]Q=(2.26+0.4184+0.33)m\times 10^6 J[/tex]

[tex]Q=3.0084m\times 10^6 J[/tex]

So this energy is equal to kinetic energy of  bullet of mass m moving with velocity v

[tex]Q=\frac{1}{2}mv^2[/tex]

[tex]3.0084m\times 10^6=\frac{1}{2}mv^2[/tex]

[tex]v^2=3.0084\times 2\times 10^6[/tex]

[tex]v=2.452\times 10^3 m/s[/tex]

[tex]v=2452.91 m/s[/tex]