A copper
wire,whose cross-sectional area is 1.1 x 10-6
m2has a linear density of 7.0 x 10-3 kg/m and
is sturngbetween two walls. At the ambient temperature,
atransverse wave travels with a speed of 46 m/s on
thiswire. The coefficient of
linearexapansion for copper is 17 x
10-6(C)-1 and Young's modulus for copperis
1.1 x 1011 N/m2. What will be the speed of the wave
whenthe temperature is lowered by 14 C? Ignore any changein
the linear density caused by the change in temperature.

Respuesta :

Answer:

v = 64.14 m/s

Explanation:

First we are going to calculate the initial tension force in the wire.

How:

[tex]V = \sqrt{\frac{T}{\mu} }[/tex]

      Where  v: Wave's speed

                   T. Tension force

                   μ: Linear densityof the wire

Then:

[tex]T = V^{2}\mu[/tex]

[tex]T = 46^{2}(7 x 10^{-3}) = 0.322N[/tex]

Now we calculate the  linear dilation of the copper, thus

ΔL = αLoΔT

  Where α:The coefficient of linear expansion for copper

ΔL = [tex](17x10^{-6})( Lo)(-14) = 0.000238 Lo[/tex]

The Young's modulus is defined like:

[tex]E = \frac{TLo}{A\Delta L}[/tex]

        Where E : The Young's modulus

                    A: cross-sectional area

Then

[tex]T = \frac{EA\Delta L}{Lo}[/tex]

[tex]T = \frac{1.1 x10^{11} (1.1x10^{-6} )(0.000238Lo)}{Lo} =28.798 N[/tex]

and the speed of the wave when the temperature is lowered is:

[tex]v = \sqrt{\frac{28.798}{7x10^{-3} } } = 64.14 m/s[/tex]