Assume that the pressure in a room remains constant at 1.01
x10^5 Pa and the aire is composed only of nitrogen. The volumeof
the room is 60.0 m^3. When the temperature increases from 289 to302
K, what mass of air (in kg) escapes from the room?

Respuesta :

Answer:

Explanation:

Given

Pressure [tex]P_1=1.01\times 10^5 Pa[/tex]

Volume of air [tex]V=60 m^3[/tex]

Initial Temperature [tex]T_1=289 K[/tex]

[tex]T_2=302 K[/tex]

Initial moles is given by

[tex]PV=nRT[/tex]

[tex]n_1=\frac{P_1V_1}{RT_1}[/tex]

[tex]n_1=\frac{1.01\times 10^5\times 60}{R\cdot 289}[/tex]

when some gas escape out

no of moles is equal to

[tex]n_2=\frac{P_2\times V_2}{R\cdot T_2}[/tex]

[tex]n_2=\frac{1.01\times 10^5\times 60}{R\cdot 302}[/tex]

remaining no of moles [tex]=n_1-n_2[/tex]

[tex]=\frac{1.01\times 10^5\times 60}{R\cdot 289}-\frac{1.01\times 10^5\times 60}{R\cdot 302}[/tex]

[tex]=\frac{1.01\times 10^5\times 60}{R}(\frac{1}{289}-\frac{1}{302})[/tex]

Mass of air escape out

[tex]=(n_1-n_2)\times M[/tex]

[tex]=(\frac{1.01\times 10^5\times 60}{R}(\frac{1}{289}-\frac{1}{302}))\times 28[/tex]

[tex]=25.272\times 10^3\ g[/tex]

[tex]m=25.272\ kg[/tex]