a 20 Kg satellite has a circular orbit with a radius of
8.0*10^6 m and a period of 2.4 h around a planet of unknown mass.
ifthe magnitude of the gravitational acceleration on the surface
ofthe planet is 8.0m/s^2, what is the radius of the planet?

Respuesta :

Answer:

Radius of the planet, [tex]r=5.8\times 10^6\ m[/tex]

Explanation:

It is given that,

Mass of the satellite, m = 20 kg

Radius of the circular orbit, [tex]r=8\times 10^6\ m[/tex]

Time period of the motion of satellite, [tex]T=2.4\ h=8640\ s[/tex]

The acceleration on the surface  of the planet is, [tex]a=8\ m/s^2[/tex]

The relation between the time period of the satellite and its radius is given by third law of Kepler as :

[tex]T^2=\dfrac{4\pi^2}{GM}r^3[/tex]

M is the mass of planet

[tex]M=\dfrac{4\pi^2r^3}{T^2G}[/tex]

[tex]M=\dfrac{4\pi^2\times (8\times 10^6)^3}{(8640)^2\times 6.67\times 10^{-11}}[/tex]

[tex]M=4.059\times 10^{24}\ Kg[/tex]

The acceleration on the surface of planet is given by :

[tex]a=\dfrac{GM}{r^2}[/tex]

[tex]r=\sqrt{\dfrac{GM}{a}}[/tex]

[tex]r=\sqrt{\dfrac{6.67\times 10^{-11}\times 4.059\times 10^{24}}{8}}[/tex]

[tex]r=5.8\times 10^6\ m[/tex]

So, the radius of the planet is [tex]5.8\times 10^6\ m[/tex]. Hence, this is the required solution.