Respuesta :
Answer:
[tex]E_y=1175510.2\ N.C^{-1}[/tex]
The Magnitude of electric field is in the upward direction as shown directly towards the charge [tex]q_1[/tex].
Explanation:
Given:
- side of a square, [tex]a=52.5\ cm[/tex]
- charge on one corner of the square, [tex]q_1=+45\times 10^{-6}\ C[/tex]
- charge on the remaining 3 corners of the square,[tex]q_2=q_3=q_4=-27\times 10^{-6}\ C[/tex]
Distance of the center from each corners[tex]=\frac{1}{2} \times diagonals[/tex]
[tex]diagonal=\sqrt{52.5^2+52.5^2}[/tex]
[tex]diagonal=74.25\cm=0.7425\ m[/tex]
∴Distance of center from corners, [tex]b=0.3712\ m[/tex]
Now, electric field due to charges is given as:
[tex]E=\frac{1}{4\pi\epsilon_0}\times \frac{q}{b^2}[/tex]
For charge [tex]q_1[/tex] we have the field lines emerging out of the charge since it is positively charged:
[tex]E_1=9\times 10^9\times \frac{45\times 10^{-6}}{0.3712^2}[/tex]
- [tex]E_1=2938775.5\ N.C^{-1}[/tex]
Force by each of the charges at the remaining corners:
[tex]E_2=E_3=E_4=9\times 10^9\times \frac{27\times 10^{-6}}{0.3712^2}[/tex]
- [tex]E_2=E_3=E_4=1763265.3\ N.C^{-1}[/tex]
Now, net electric field in the vertical direction:
[tex]E_y=E_1-E_4[/tex]
[tex]E_y=1175510.2\ N.C^{-1}[/tex]
Now, net electric field in the horizontal direction:
[tex]E_y=E_2-E_3[/tex]
[tex]E_y=0\ N.C^{-1}[/tex]
So the Magnitude of electric field is in the upward direction as shown directly towards the charge [tex]q_1[/tex].
