Answer:
ω₂ = 13.09 rad/s
Explanation:
given,
small disk rotating speed = 500 rpm
radius of small disk = R
radius of larger disk = 2 R
rotational speed of larger disk = ?
using the law of conservation of angular momentum, we get
I₁ ω₁ = I₂ ω₂
moment of inertia for solid disk
[tex]I = \dfrac{1}{2}MR^2[/tex]
now,
[tex](\dfrac{1}{2}MR_1^2)\omega_1=(\dfrac{1}{2}MR_2^2)\omega_2[/tex]
[tex](\dfrac{1}{2}MR^2)\omega_1=(\dfrac{1}{2}M(2R)^2)\omega_2[/tex]
[tex]R^2\times \omega_1= 4 R^2\times \omega_2[/tex]
[tex]\omega_2=\dfrac{\omega_1}{4}[/tex]
[tex]\omega_2=\dfrac{500}{4}[/tex]
ω₂ = 125 rpm
and
[tex]\omega_2=125\times \dfrac{2\pi}{60}[/tex]
ω₂ = 13.09 rad/s
the rotational speed of larger disc is equal to ω₂ = 13.09 rad/s