Answer:
Approximately 149 cubic centimeters of water
Step-by-step explanation:
step 1
Find the volume of water in the tank
The volume of a rectangular prism is equal to
[tex]V=LWH[/tex]
we have
[tex]L=10\ in\\W=5\ in\\H=7\ in[/tex]
substitute
[tex]V=(10)(5)(7)=350\ cm^3[/tex]
step 2
Find the volume of the cylindrical container
The volume of the cylinder is equal to
[tex]V=\pi r^{2}h[/tex]
we have
[tex]r=4/2=2\ in[/tex] ---> the radius is half the diameter
[tex]h=1.6\ in[/tex]
[tex]\pi =3.14[/tex]
substitute
[tex]V=(3.14)(2)^{2}(1.6)[/tex]
[tex]V=20.096\ cm^3[/tex]
step 3
To find out how much water is still in the tank, subtract the volume of 10 containers of water from the volume of the tank
so
[tex]350-(10)(20.096)=149.04\ cm^3[/tex]
therefore
Approximately 149 cubic centimeters of water