A thin walled spherical shell is rolling on a surface. What
fraction of its total kinetic energy is in the form ofrotational
kinetic energy about the center of mass?

Respuesta :

Answer:

[tex]=\frac{1/3}{5/6} = 0.4[/tex]

Explanation:

Moment of inertia of given shell[tex] = \frac{2}{3} MR^2[/tex]

where

M represent sphere mass

R -sphere radius

we know linear speed is given as [tex]v = r\omega[/tex]

translational [tex]K.E = \frac{1}{2} mv^2 = \frac{1}{2} m(r\omega)^2[/tex]

rotational [tex]K.E = \frac{1}{2} I \omega^2 = \frac{1}{2} \frac{2}{3} MR^2 \omega^2[/tex]

total kinetic energy will be

[tex]K.E = \frac{1}{2} m(r\omega)^2 + \frac{1}{2} \frac{2}{3} MR^2 \omega^2[/tex]

[tex]K.E =\frac{5}{6} MR^2 \omega^2[/tex]

fraction of rotaional to total K.E

[tex]=\frac{1/3}{5/6} = 0.4[/tex]