Answer:
[tex]E=2.41\cdot 10^{-5} J[/tex]
Explanation:
The intensity of an electromagnetic wave can be expressed in terms of the magnetic field using the next relationship:
[tex]I_{average}=\frac{cB_{0}^{2}}{2\mu_{0}}[/tex] (1)
[tex]I_{average}=\frac{3\cdot 10^{8}(1.5\cdot 10^{-10})^{2}}{2\cdot 1.26\cdot 10^{-6}}[/tex]
[tex]I_{average}=2.68\cdot 10^{-6} W/m^{2}[/tex]
Now, let's define the relationship between power (P) and average intensity (I).
[tex]I_{average}=\frac{P}{A}[/tex]
So we can calculate the power.
[tex]P=I_{average}\cdot A=2.68\cdot 10^{-6}\cdot 0.20=5.37\cdot 10^{-7} W[/tex]
Finally, energy is the product of P times time, so:
[tex]E=P\cdot t=5.37\cdot 10^{-7} \cdot 45=2.41\cdot 10^{-5} J[/tex]
I hope it helps you!