The Mass of Pluto was not known until it was discovered tohave
a moon. Explain how this discovery enabled an estimate ofPluto's
mass.

Respuesta :

Answer:

[tex]M = \frac{R^3 \times \omega^2}{G}[/tex]

M is mass of pluto

Explanation:

we know that gravitational force between moon and Pluto can be derived by using the given relation

[tex]F_{gravitational} = \frac{GMm}{r^2}[/tex]

here

G-gravitational constant =[tex] 6.67408 \times 10^{-11} m^3 kg^{-1} s^{-2}[/tex]

M- mass of pluto

m -  mass of moon [tex]= 7.34767309 \times 10^{22} kg[/tex]

r - radius of moon - 1737.1 km

F_{gravitational} = centripetal force [tex]= \frac{m v^2}{R}[/tex]

where [tex]v = \omega \times r[/tex]

[tex]\omega[/tex] - angular speed of moon [tex]= 2.7 \times 10^{-6} /s[/tex]

plugging all value in the above equation to get the mass of Pluto

[tex] \frac{m (\omega\times r)^2}{R} = \frac{GMm}{r^2}[/tex]

[tex]M = \frac{R^3 \times \omega^2}{G}[/tex]

M is mass of pluto