A train consists of 50 cars, each of which has a mass 6.8
x10^3 kg. The train has an acceleration of +8.0 x 10^-2m/s^2.
Ignore friction and determine the tension in thecoupling a) between
the 30th and 31st cars and b) between the 49thand 50th cars.

Respuesta :

Answer:

Explanation:

Given

mass of each car [tex]m=6.8\times 10^3 kg[/tex]

acceleration of train [tex]a=8\times 10^{-2} m/s^2[/tex]

Force required to pull this system

[tex]F=50\times ma[/tex]

For first car

[tex]F-T{1-2}=ma[/tex]

[tex]T_{1-2}=50ma-ma[/tex]

[tex]T_{1-2}=49 ma[/tex]

for second car

[tex]T_{1-2}-T_{2-3}=ma[/tex]

[tex]T_{2-3}=49 ma-ma[/tex]

[tex]T_{2-3}=48 ma[/tex]

this form a pattern of the form

[tex]T_{n-(n+1)}=(50-n)ma[/tex]

for (a)30 th and 31 st car tension

[tex]T_{30-31}=(50-30) ma[/tex]

[tex]T_{30-31}=20\times 6.8\times 10^{3}\times 8\times 10^{-2}[/tex]

[tex]T_{30-31}=10,880\ N[/tex]

For 49 th and 50 th car

[tex]T_{49-50}=(50-49) ma[/tex]

[tex]T_{49-50}=544\ N[/tex]

Ver imagen nuuk