Answer:
31.321 rad/s
Explanation:
L = Tube length
A = Area of tube
[tex]\rho[/tex] = Density of fluid
v = Fluid velocity
m = Mass = [tex]\rho Al[/tex]
Centripetal force is given by
[tex]F=\dfrac{mv^2}{L}\\ F=\dfrac{m(\omega L)^2}{L}\\ F=m\omega^2\\ F= 0.01A\rho\omega^2L[/tex]
Pressure is given by
[tex]P=\dfrac{F}{A}=\rho gL\\\Rightarrow \dfrac{0.01A\rho\omega^2L}{A}=\rho gL\\\Rightarrow 0.01\omega^2=g\\\Rightarrow \omega^2=\dfrac{g}{0.01}\\\Rightarrow \omega=\sqrt{\dfrac{g}{0.01}}\\\Rightarrow \omega=\sqrt{\dfrac{9.81}{0.01}}\\\Rightarrow \omega=31.321\ rad/s[/tex]
The angular speed of the tube is 31.321 rad/s