A circular loop of radius 5 cm is placed with its
planeperpendicular to B. If the magnetic induction B changes from
0.1Wb/m2 to 0.5 Wb/m2 in 0.025 sec.,
calculatethe induced emf.

Respuesta :

Answer:

[tex]emf=0.1257\ V[/tex]

Explanation:

Given:

  • radius of a circular loop, [tex]r=5\ cm=0.05\ m[/tex]
  • initial magnetic flux density, [tex]B_i=0.1\ Wb.m^{-2}[/tex]
  • final magnetic flux density, [tex]B_f=0.5\ Wb.m^{-2}[/tex]
  • time taken for the change in flux density, [tex]t=0.025\ s[/tex]

Now using Faraday's Law of induced emf:

[tex]emf=\frac{\Delta (BA)}{t}[/tex] ............................(1)

Firstly we find the area of the loop:

[tex]A=\pi.r^2[/tex]

[tex]A=\pi\times 0.05^2[/tex]

[tex]A=0.0078\ m^2[/tex]

Now putting the respective values in eq. (1):

[tex]emf=\frac{(0.5-0.1)\times 0.0078}{0.025}[/tex]

[tex]emf=0.1257\ V[/tex]