[tex]\text{ The product of } 1\frac{4}{5} \times 2\frac{5}{6} \text{ is }5.1 \text{ or } \frac{51}{10} \text{ or } 5\frac{1}{10}[/tex]
Solution:
Given that we have to find the product of [tex]1\frac{4}{5} \times 2\frac{5}{6}[/tex]
Let us first convert the mixed fractions to improper fractions
A Mixed Fraction is a whole number and a proper fraction combined
Steps to convert:
Multiply the whole number part by the fraction's denominator.
Add that to the numerator.
Then write the result on top of the denominator.
[tex]1\frac{4}{5} = \frac{ 5 \times 1 + 4}{5} = \frac{9}{5}[/tex]
[tex]2\frac{5}{6} = \frac{ 6 \times 2 + 5}{6} = \frac{17}{6}[/tex]
Now multiply both the fractions
[tex]\rightarrow \frac{9}{5} \times \frac{17}{6} = \frac{17 \times 3}{5 \times 2} = \frac{51}{10}\\\\\rightarrow \frac{51}{10} = 5.1[/tex]
In mixed fractions, we can write as,
[tex]\rightarrow \frac{51}{10} = 5\frac{1}{10}[/tex]
Thus the product is found