Respuesta :

Answer:

[tex]^nP_r=n![/tex] Proved.

Step-by-step explanation:

Consider the provided information.

We need to explain why [tex]^nP_n=n![/tex] for all positive integers n.

The permutation formula is: [tex]^nP_r=\frac{n!}{(n-r)!}[/tex]

Now substitute r=n in above formula as we want the value of [tex]^nP_n[/tex]

[tex]^nP_n=\frac{n!}{(n-n)!}[/tex]

[tex]^nP_r=\frac{n!}{(0)!}[/tex]

The value of 0! is 1.

Therefore,

[tex]^nP_r=\frac{n!}{1}[/tex]

[tex]^nP_r=n![/tex]

Hence, proved.