Respuesta :

Answer:

1341.03 V/m

Explanation:

The power output per unit area is the intensity and also the is the magnitude of the Poynting vector.

                                 [tex]S = \frac{P}{A}[/tex] = cε₀[tex]E^{2} _{rms}[/tex]

                             ⇒ [tex]\frac{P}{A}[/tex] = cε₀[tex]E^{2}_{rms}[/tex]

Where;

P is the power output

A is the area of the beam

c is speed of light

ε₀ is permittivity of free space 8.85 × 10⁻¹² F/m

[tex]E_{rms}[/tex] is the average (rms) value of electric field

Making electricfield [tex]E_{rms}[/tex] the subject of the equation

                                 [tex]E^{2}_{rms}[/tex] = P / Acε₀

                                 [tex]E_{rms}[/tex] = √(P / Acε₀)

But area A = πr²

                                 [tex]E_{rms}[/tex] = √(P / πr²cε₀)                    

Given:

Output power, P = 15 mW = 0. 015 W

Diameter, d = 2 mm = 0.002 m

⇒ Radius, [tex]r = \frac{d}{2} = \frac{0.002}{2} = 0.001 m[/tex]

Solving for average (rms) value of electric field;     

[tex]E_{rms} = \sqrt{\frac{0.015 W}{\pi * (0.001 m)^2 * (3 * 10^8 m/s) * (8.85 * 10^-12) C^2/Nm^2} }[/tex]

                                [tex]E_{rms}[/tex] = 1341.03 V/m