Respuesta :

Answer:

The value of x , y for given linear equation using elimination is   [tex]\dfrac{- 17}{11}[/tex] ,  [tex]\dfrac{ 14}{11}[/tex]  .

Step-by-step explanation:

Given as :

The two linear equation are

-2 x + 7 y = 12                   .............A

3 x + 6 y = 3                    .............B

Solving the equation using elimination method

Now, multiply the equation A by 3

i.e 3 × ( - 2 x + 7 y ) = 3 × 12

Or, - 6 x + 21 y = 36                .......C

Again

multiply the equation B by 2

i.e 2 × ( 3 x + 6 y ) = 2 × 3

Or, 6 x + 12 y = 6                .....D

Now, Solving equation C an D

( - 6 x + 21 y ) + ( 6 x + 12 y ) = 36 + 6

Or , ( - 6 x + 6 x ) + ( 21 y + 12 y ) = 42

Or, (0) + (33 y ) = 42

Or, 33 y = 42

∴   y = [tex]\dfrac{42}{33}[/tex]

dividing numerator and denominator by 3

i.e y = [tex]\dfrac{14}{11}[/tex]

So, The value of y = [tex]\dfrac{14}{11}[/tex]

Now, Put the value of y into eq C

∵ - 6 x + 21 y = 36                

Or, - 6 x + 21 × [tex]\dfrac{14}{11}[/tex] = 36        

Or, - 6 x + [tex]\dfrac{294}{11}[/tex] = 36      

Or, - 6 x = 36 -  [tex]\dfrac{294}{11}[/tex]

Or, - 6 x =  [tex]\dfrac{396 - 294}{11}[/tex]

Or, - 6 x =  [tex]\dfrac{102}{11}[/tex]

∴  x = [tex]\frac{102}{11\times (-6)}[/tex]

i.e x =  [tex]\dfrac{- 17}{11}[/tex]

So, The value of x = [tex]\dfrac{- 17}{11}[/tex]

Hence, The value of x , y for given linear equation using elimination is   [tex]\dfrac{- 17}{11}[/tex] ,  [tex]\dfrac{ 14}{11}[/tex]  . Answer