Respuesta :
Answer:
[tex]a'=2\times a[/tex]
Explanation:
given,
first case
car speed = v
radius of curve = r
second case
car speed (v')= 2 v
radius of curve (r')=2 r
centripetal acceleration of car is given by
[tex]a=\dfrac{v^2}{r}[/tex]
for second case
[tex]a'=\dfrac{v'^2}{r'}[/tex]
[tex]a'=\dfrac{(2v)^2}{2r}[/tex]
[tex]a'=2\dfrac{v^2}{r}[/tex]
[tex]a'=2\times a[/tex]
Hence, the centripetal acceleration on the second case is twice of first case.